

Developer’s Manual
v.1.1

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 1

Table of Contents

1. Description of Project ..2
2. Understanding and extending Pamvotis Simulator..3
3. Creating Simulation Scenarios...5

3.1. Description of source elements...7
3.1.1. Generic source ...7
3.1.2. FTP source ...7
3.1.3. HTTP source ..7
3.1.4. Video source ..8

4. Using Pamvotis as an Embedded Simulator ..9
5. License and Contribution...10

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 2

1. Description of Project
Pamvotis simulator is designed using a flexible architecture, in order developers to
implement their own models or add their own extensions. For this purpose, a number
of methods is created which are not all used by the simulator itself, but are useful for
developers that want to extend the code.

The Pamvotis project is developed in Java 1.6. In order the executable file to be small
and to reduce the resources required, only libraries included in JRE are used.

Pamvotis is created with Eclipse application. If you intend to extend the code of
Pamvotis, we recommend that you use Eclipse. If you don’t, keep in mind that you
have to set the classpath correctly.

The whole project is constituted of four packages. The first (pamvotis.core) contains
the classes required for the simulation execution. The second, (pamvotis.intf) contains
the classes that implement the user interface in SWING. The third (pamvotis.sources)
contains the classes that implement the various traffic sources. The last
(pamvotis.exceptions) contains classes that implement exceptions related to Pamvotis
project. It is obvious that developers are not interested in the intf package.

An extended description of each class and each method Pamvotis provides is formally
documented in HTML format in the doc/classDoc folder. Open the file index.html
existed in classDoc folder with your browser, or access the documentation online at
the Pamvotis site.

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 3

2. Understanding and extending Pamvotis Simulator
In order to understand the way by which the Simulator class performs a simulation, a
skeleton of the whole procedure is outlined in this section. However, if you want to
extend the functionality of Pamvotis (implement your own model or add some other
features) then you should also study the comments of the code.

The whole procedure by which a simulation is performed contains the following
steps:

1. Read the simulation scenario parameters from the config/ntConf.xml file and
store them to some internal, private variables.

2. Create and print the headers of the statistical results files.

3. Run the simulation for a specific time interval(e.g 0..10sec). Mean statistical
results will be printed for this interval (0..10sec).

4. Repeat step 3 as many times as needed. For example, continue running the
simulation for another time interval (e.g. 10..20 sec). Mean statistic results will
be printed for 10..20sec. Run the simulation for 20..30sec. Statistic results will
be printed for 20..30sec.

5. Print mean statistical results related to the total simulation time. In our
example, mean values will be printed for 0..30sec.

For each of the above steps (excluding step 4 obviously), a public method exists that
implements it. The first step is implemented with the ConfParams method, which
reads the simulation scenario parameters from the config/ntConf.xml file and stores it
to some global variables.

The second step is implemented by the PrintHeaders method, which creates some text
files and prints some headers in it.

The third step, which is the most important, is implemented by the simulate method.
This method takes two arguments; the start time and the end time, in milliseconds. It
transforms the start time and the end time in slots. Then, for every slot, from start time
to end time, it executes a for loop which does the following:

• Synchronizes the timer of each node.

• If a node has generated a packet, it adds it to the node’s packet queue. This is
implemented through the putPacketToQueue method.

• If a node has a packet to send in its queue, it takes this packet for transmission.
This is implemented through takePacketFromQueue method.

• Begins to compete for the medium (fightForSlot). Three methods may be
called in this step, depending on the medium’s state in this slot (emptySlot,
successfulTransmission, collision).

• Calculates the statistics and add a horizontal line in the results files with the
time instance and the statistic for each node. This is implemented through the
printStats method.

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 4

Step 5 is implemented through the printMeanValues method, which prints the mean
values of each statistic and for each node to a text file.

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 5

3. Creating Simulation Scenarios
The parameters of a simulation configuration are read from the config/ntConf.xml
file. You create simulation scenarios by editing this file. Put another way, all the
interface package does is to collect some user-input parameters and write them to the
xml file. You can see the structure of the xml file if you create a simulation scenario
run the simulation (it is not necessary to finish, stop it when it begins) and edit the
config/ntConf.xml file. The xml file structure was kept as simpler as possible, in order
people not familiar with xml to be able to edit it and modify it. Each of the xml
parameters is explained below.

• Seed: An integer number from which the random number generator is
initialized. Different values of seed produce different simulation scenarios.

• Duration: The duration of the simulation in seconds.

• Values: The number of collected values for each statistic, that will be written
to the results files.

• Node element: We create as many node elements as the network nodes. Each
node element has a number (ID) which is an integer number, unique for each
node. Each element has the following characteristics:

o rate: The node’s data rate in bits.

o Coverage: The coverage range of each node in meters.

o xPosition: The horizontal (x) coordinate of each node in meters. If you
do not care about hidden terminals and want all nodes to be in LOS, set
the same values for xPosition and yPosition parameters. Do not leave
them blank.

o yPosition: The vertical (y) coordinate of each node in meters. If you do
not care about hidden terminals and want all nodes to be in LOS, set
the same values for xPosition and yPosition parameters. Do not leave
them blank.

o AC: The node’s access category for IEEE 802.11e EDCA (0, 1, 2 or 3).
Be sure to use only one of the above values. Any other value will be
considered as AC-0 (best effort). Be also sure to set AC-0 for all nodes,
if you do not want to use EDCA at all.

o Source element: This element describes a traffic source for a node.
Each node can have on or more traffic sources, each one represented
by a source element. Each source element has an ID, which is a unique
integer number for each source in a node, and a type, which can be one
of the following: generic, ftp, http, video. See the description of each
one of the elements, further on this section.

• nodes: The number of nodes in the network. This parameter is not used at all
and may be omitted.

• mixedNodes: The number of IEEE 802.11b compliant nodes in a mixed
802.11b/g network. Be careful with this parameter. If you set it different than
0, be sure to set the phyLayer parameter to m.

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 6

• phyLayer: The physical layer type. (802.11 simple/a/b/g/mixed). s for simple,
original 802.11, a for 802.11a, b for 802.11b, g for 802.11g and m for mixed
mode 802.11b/g. Be sure to write only one of the above four characters in
lowercase. Any other character will be handled as 802.11g layer. Be also sure
to set the number of 802.11b compliant nodes (mixNodes parameter) if you
selected the mixed mode network.

• RTSThr: The RTS threshold in bits. Set it to 0 if you want to be always
enabled. Set it to 999999 if you want to be disabled, or set it to a value you
desire.

• CTSToSelf: The CTS-to-Self parameter for 802.11g networks. Set it to y if you
want it to be enabled or to n if you want it to be disabled. Be careful to select
the correct type of physical layer. Enabling the CTS-to-Self parameter will
have an effect only in 802.11g networks. Enabling CTS-to-Self and selecting
another type of physical layer will lead to unexpected results.

• EDCA element: This element contains parameters for the 802.11e EDCA
function for QoS. Leave the default values if you do not want to use it. Default
values may be seen if you run Pamvotis Simulator and create a scenario
without using 802.11e EDCA.

o CWMinFact0/1/2/3: The division factor for the minimum contention
window for AC-0, AC-1, AC-2 and AC-3 respectively. See the user’s
manual for a definition of the division factor.

o CWMaxFact0/1/2/3: The division factor for the maximum contention
window for AC-0, AC-1, AC-2 and AC-3 respectively. See the user’s
manual for a definition of the division factor.

o AIFS0/1/2/3: The value of AIFS for AC-0, AC-1, AC-2 and AC-3
respectively. See the user’s manual for a definition of AIFS.

• ResultsPath: The path where the results files will be created.

• OutResults: This is a tricky string parameter. It is used to check which results
the user wants to be printed. If a user wants to collect values for a specific
result then a specific substring is concatenated to the string parameter. For
each result, the PrintStats method of the Simulator class checks to see if a
specific substring is contained in the outResults string variable. If it does, then
the result is printed. The substrings representing each result are shown below:

o tb: Throughput in bits/s.

o tp: Throughput in packets/s.

o ut: Utilization.

o md: Media access delay.

o qd: Queueing delay.

o td: Total delay.

o dj: Delay jitter.

o ra: Retransmission attempts.

o ql: Queue length.

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 7

Thus, if we want to collect values for the first three results and for the last, we would
have to define the outResults parameter as tb_tp_ut_ql_. Actually, the underscore is
not necessary, but is useful for separating the substrings. If you do not want any
results to be printed, do not leave this parameter empty. Just define it with an
underscore or another character.

3.1. Description of source elements
In this subsection, a description of the parameters of each source element is outlined.

3.1.1. Generic source
This source represents a generic (abstract) source, producing abstract traffic, obeying
specific parameters. Use this source by specifying type=”generic” in the definition of
the source element.

• pktLngth: The node’s packet length mean value in bits. Can be a decimal
number.

• pktDist: The distribution of the packet length: c for constant, u for uniform and
e for exponential. Be sure to write only one of the above three characters in
lowercase. Write only one of the predefined characters. Any other character
will be handled as exponential distribution.

• intArrTime: The mean value of the packet generation rate in packets/sec. Can
be a decimal number.

• intArrDstr: The distribution of the packet generation rate: c for constant, u for
uniform and e for Poisson. Be sure to write only one of the above three
characters. Write the characters in lowercase. Write only one of the predefined
characters. Any other character will be handled as Poisson distribution.

3.1.2. FTP source
This source represents a source generating FTP traffic, as described in 3GPP TR
25.892 V6.0.0 (see Appendix). Use this source by specifying type=”ftp” in the
definition of the source element. For the explanation of the parameters that follow,
please have a look at the appendix.

• pktSize: The MSDU packet size in bits. Can be a decimal number.

• fileSizeMean: The mean value of the file size in bytes. Can be a decimal
number.

• fileSizeStDev: The standard deviation of the file size in bytes. Can be a
decimal number.

• fileSizeMax: The maximum value of the file size in bytes. Can be a decimal
number.

• readingTime: The reading time in seconds. Can be a decimal number.

3.1.3. HTTP source
This source represents a source generating HTTP traffic, as described in 3GPP TR
25.892 V6.0.0 (see Appendix). Use this source by specifying type=”http” in the
definition of the source element. For the explanation of the parameters that follow,
please have a look at the appendix.

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 8

• pktSize: The MSDU packet size in bits. Can be a decimal number.

• mainObjectMean, mainObjectStDev, mainObjectMin, mainObjectMax: The
mean, standard deviation, minimum and maximum values of the main object
in bytes. Can be a decimal number.

• embObjectMean, embObjectStDev, embObjectMin, embObjectMax: The mean,
standard deviation, minimum and maximum values of the embedded object in
bytes. Can be a decimal number.

• NumOfEmbObjectsMean, NumOfEmbObjectsMax: The mean and maximum
values of the number of embedded objects. Can only be integer values.

• readingTime: The reading time in seconds. Can be a decimal number.

• parsingTime: The parsing time in seconds. Can be a decimal number.

3.1.4. Video source
This source represents a source generating video traffic, as described in 3GPP TR
25.892 V6.0.0 (see Appendix). Use this source by specifying type=”video” in the
definition of the source element. For the explanation of the parameters that follow,
please have a look at the appendix.

• frameRate: The frame rate in frames/sec. Can only be an integer number.

• packetsPerFrame: The number of packets per frame. Can only be an integer
number.

• pktSize: The mean value of the packet size in bytes. Can be a decimal number.

• pktSizeMax: The maximum value of the packet size in bytes. Can be a decimal
number.

• pktIntArr: The mean value packet interarrival time in seconds. Can be a
decimal number.

• pktIntArrMax: The maximum value of the packet interarrival time in seconds.
Can be a decimal number.

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 9

4. Using Pamvotis as an Embedded Simulator
Pamvotis Simulator was designed through a flexible architecture that enables
developers to use it as an embedded simulator, inside their own simulator. For
example, let’s suppose that someone has developed a simulator for the IP layer (or
perhaps for some layers above IP) and needs a simulator for the 802.11 MAC layer.
Pamvotis can be used inside this simulator without any modification in the code. An
other example is that someone has a UMTS simulator and needs to use an 802.11
simulator to simulate cross-system handovers or call access control algorithms.
Pamvotis can be controlled through the other simulator without modification in the
code.

All the above are feasible through some public methods that Pamvotis provides. All
the user needs to do is to create an instance of the Simulator class and call the
necessary methods. At the root of the Pamvotis folder, there exists a file named
Example.java, which is an example of how to use Pamvotis as an embedded
simulator. Another example of how to use Pamvotis is the interface itself. Take a look
at the run method of the SimThread inner class, located in the Run class of the
pamvotis.intf package.

An extended description of each class and each method Pamvotis provides is formally
documented in HTML format in the doc/classDoc folder. Open the file index.html
existed in classDoc folder with your browser, or access the documentation online at
the Pamvotis site.

 Developer’s Manual

Copyright© - 2008 – Dimitris El. Vassis- Vassilis Zafeiris 10

5. License and Contribution
It should be reminded again that Pamvotis may be distributed or modified under the
terms of the GNU general Public Lisence.

Moreover, in order to extend and improve Pamvotis, it is kindly asked to contact with
the author for any innovative modification performed in the code. References will be
added to the web site and another version of Pamvotis will be released, based on the
user’s contribution.

For any information, please contact Dimitris Vassis:

support@pamvotis.org

Copyright© - 2008 – Dimitris El. Vassis Vassilis Zafeiris - All Rights Reserved

